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Towards a macroscopic modeling of the complexity in traffic flow
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~Received 16 May 2001; revised manuscript received 10 September 2001; published 8 February 2002!

Based on the assumption of a safe velocityUe(r) depending on the vehicle densityr, a macroscopic model
for traffic flow is presented that extends the model of the Ku¨hne-Kerner-Konha¨user by an interaction term
containing the second derivative ofUe(r). We explore two qualitatively different forms ofUe : a conventional
Fermi-type function and, motivated by recent experimental findings, a function that exhibits a plateau at
intermediate densities, i.e., in this density regime the exact distance to the car ahead is only of minor impor-
tance. To solve the fluidlike equations a Lagrangian particle scheme is developed. The suggested model shows
a much richer dynamical behavior than the usual fluidlike models. A large variety of encountered effects is
known from traffic observations, many of which are usually assigned to the elusive state of ‘‘synchronized
flow.’’ Furthermore, the model displays alternating regimes of stability and instability at intermediate densities.
It can explain data scatter in the fundamental diagram and complicated jam patterns. Within this model, a
consistent interpretation of the emergence of very different traffic phenomena is offered: they are determined
by the velocity relaxation time, i.e., the time needed to relax towardsUe(r). This relaxation time is a measure
of the average acceleration capability and can be attributed to the composition~e.g., the percentage of trucks!
of the traffic flow.
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I. INTRODUCTION

Traffic is a realization of an open one-dimensional ma
body system. Recently, Popkov and Schu¨tz @1# found that the
fundamental diagram determines the phase diagram of su
system at least for a very simple but exactly solvable
model, the so-called asymmetric exclusion process~ASEP!.
In particular, the most important feature that influences
phase diagram is the number of extrema in the fundame
diagram.

This is exactly the theme of this report. We present
extension of classical, macroscopic~‘‘fluidlike’’ ! traffic flow
models. Usually, it is assumed that the fundamental diag
is a one-hump function; however, recent empirical resu
point to more complicated behavior. It is impossible to a
sign a single flow functionj (r) to the measured data poin
in a certain density range. Therefore, it can be speculated
this scatter hides a more complicated behavior of the fun
mental diagram in this regime. We explore two qualitative
different forms of the safe velocityUe(r), the velocity to
which the flow tends to relax, which leads from the usu
one-hump behavior of the flow density relation to a mo
complicated function that exhibits, depending on the rel
ation parameter, one, two, or three humps. Obviously,
drivers may have differentUe(r) functions, adding anothe
source of dynamical complexity, which will not be discuss
in this paper.

II. THE MODEL

A. Equations

If the behavior of individual vehicles is not of conce
and the focus is more on aggregated quantities~e.g., density
r, mean velocity,v, etc.!, one often describes the syste
dynamics by means of macroscopic, fluidlike equations. T
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form of these Navier-Stokes-like equations can be motiva
from anticipative behavior of the drivers.

Assume there is a safe velocityUe that only depends on
the densityr. The driver is expected to adapt the velocity
a way thatv relaxes on a time scalet to this desired velocity
corresponding to the density atx1Dx

v~x1vt,t1t!5Ue„r~x1Dx!…. ~1!

If both sides are Taylor expanded to first order, one finds

v~x!1
]v
]x

vt1
]v
]t

t1O~t2!5Ue~r!1
]Ue

]r

]r

]x
Dx

1O„~Dx!2
…. ~2!

InsertingDx5r21

]v
]t

1v
]v
]x

5
Ue~r!2v

t
1

1

rt

]Ue~r!

]r

]r

]x
. ~3!

Abbreviating@]Ue(r)/]r#1/t with 2c0
2 the Payne equation

@2# is recovered

]v
]t

1v
]v
]x

5
Ue~r!2v

t
2

c0
2

r

]r

]x
. ~4!

If one seeks the analogy to the hydrodynamic equations,
can identify a ‘‘traffic pressure’’P5c0

2r. In this sense traffic
follows the equation of state of a perfect gas~compare to
thermodynamics:P5nkBT).

The above described procedure to motivate fluidlike m
els can be extended beyond the described model i
straightforward way. If, for example, Eq.~1! is expanded to
second order, quadratic terms int are neglected, the abbre
viation c0 is used and the terms in front of]2Ue /]r2 are
absorbed in the coupling constantg, one finds
©2002 The American Physical Society06-1
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]v
]t

1v
]v
]x

5
Ue~r!2v

t
2

c0
2

r

]r

]x
1gUe9~r!. ~5!

The primes in the last equation denote derivatives w
respect to the density. Since these equations allow infini
steep velocity changes, we add~as in the usual macroscop
traffic flow equations@3,4#! a diffusive term to smooth ou
shock fronts

]v
]t

1v
]v
]x

5
Ue~r!2v

t
2

c0
2

r

]r

]x
1

m

r

]2v

]x2
1gUe9~r!.

~6!

Since a vehicle passing through an infinitely steep vel
ity shock front would suffer an infinite acceleration, we i
terpret the diffusive~‘‘viscosity’’ ! term as a result of the
finite acceleration capabilities of real world vehicles. O
model Eq.~6! extends the equations of the Ku¨hne-Kerner-
Konhäuser~in the sequel calledK3 model;@3,4#! model by a
term coupling to the second derivative of the desired vel
ity. Throughout this study we usec0515 ms21, m
550 ms21, andg5831024 m22 s21.

B. Shape of the safe velocity

The form of the safe velocityUe plays an important role
in this class of models~as can be seen, for example, from t
linear stability analysis of the K3 model!. However, experi-
mentally the relation between this desired velocity and
vehicle density is poorly known. It is reasonable to assum
maximum at vanishing density and once the vehicle bump
touch, the velocity will~hopefully! be zero.

To study the effect of the additional term in the equatio
of motion, we first investigate the case of the conventio
safe velocity given by a Fermi function of the form@4#

Ue540„1/$11exp@~r20.25!/0.06#%23.7231026
… ms21.

~7!

SinceUe is at present stage rather uncertain, we also ex
ine the effects of a more complicated relation between
desired velocityUe and the densityr. For this reason we
look at a velocity-density relation that has a plateau at in
mediate densities, which, in a microscopic interpretati
means that in a certain density regime drivers do not c
about the exact distance to the car ahead. We chose aUe
function of the form

Ue~r!5
V0

2
@j~r!2j~1!#, rP@0,1# ~8!

with

j~x!5n1Q~x2xc1!1n2Q~x2xc2! ~9!

where Q(x)51/@11exp(ax)# is used. The parametersn1
51.5, n250.5, a525.0, xc150.2, xc150.5, and V0540
ms21 are used throughout this study. The corresponding s
velocity and flow are shown in Fig. 1. Note that the densit
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are always normalized with respect to their maximum p
sible valuermax, which is given by the average vehicl
length asl veh

21 .

III. THE NUMERICAL METHOD: A LAGRANGIAN
PARTICLE SCHEME

We use a Lagrangian particle scheme to solve the Nav
Stokes-like equations for traffic flow. A particle method sim
lar to the smoothed particle hydrodynamics method@5# has
been used previously to simulate traffic flow@6#. The method
we use here, however, differs in the way the density and
derivatives are calculated. The particles correspond to m
ing interpolation centers that carry aggregated propertie
the vehicle flow, as, for example, the vehicle densityr. They
are not to be confused with single ‘‘test vehicles’’ in the flo
they rather correspond to ‘‘a bulk’’ of vehicles.

The first step in this procedure is to define what is me
by the term ‘‘vehicle density.’’ Since we assign a numb
indicating the corresponding vehicle numberni to each par-
ticle i with positionxi , the density definition is straightfor
ward, i.e., the number of vehicles per length that can
assigned unambiguously to particlei, or

r i5
ni

~xi 112xi !/21~xi2xi 21!/2
5

2ni

xi 112xi 21
. ~10!

Once this is done one has to decide in which way spa
derivatives are to be evaluated. One possibility would be
take finite differences of properties at the particle positio
However, one has to keep in mind that the particles are
necessarily distributed equidistantly and thus in standard
nite differences higher-order terms do not automatically c
cel outexactly. The introduced errors may be appreciable
the surrounding of a shock and they can trigger numer
instabilities that prevent further integration of the syste
Therefore, we decided to evaluate first-order derivatives
the analytical derivativesof cubic spline interpolations
through the particle positions. Second-order derivatives o
variablef are evaluated using centered finite differences

FIG. 1. Safe velocity with a plateau and the corresponding flo
For details see text.
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]2f

]x2
~x!5

f 11 f 222 f ~x!

d2
1O~d3!, ~11!

where f 1[ f (x1d) and f 2[ f (x2d) are evaluated by
spline interpolation andd is an appropriately chosen discre
zation length. Since we do not evolve the ‘‘weights’’ni in
time, there is no need to handle a continuity equation,
total vehicle numberN is constant and is given asN
5( ini .

Denoting the left-hand side of Eq.~6! in Lagrangian form

v̇[dv/dt5]v/]t1v]v/]x, we are left with a first-order
system

ẋi5v i ~12!

v̇ i5
Ue~r!2v

t
2

c0
2

r

]r

]x
1

m

r

]2v

]x2
1gUe9~r!. ~13!

This set of equations is integrated forward in time
means of a fourth-order accurate Runge-Kutta integra
with adaptive time step.

The described scheme is able to resolve emerging sh
fronts sharply without any spurious oscillations. An exam
of such a shock front is shown in Fig. 2 for the K3 model.

IV. COMPLEXITY IN TRAFFIC FLOW

Traffic modeling as well as traffic measurements hav
longstanding tradition~e.g., Greenshields@7#, Lighthill and
Whitham @8#, Richards@9#, Gaziset al. @10#, Treiterer@11#,
to name just a few!. In recent years physicists working in th
area have tried to interpret and formulate phenomena
countered in traffic flow in the language of nonlinear dyna
ics ~see, for example, the review of Kerner@12# and many of
the references cited therein!. The measured real-world dat

FIG. 2. Emerging spontaneous breakdown of traffic flow in
unstable regime of the K3 model (r in50.20, m550 ms21, t
510 s). Shown is a developed, but still broadening, backw
moving jam and a sharply localized forward moving and still ste
ening velocity perturbation.
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reveal a tremendous amount of different phenomena, m
of which are also encountered in other nonlinear system

To identify properties of our model equations, we app
them to a closed one-lane road loop. The loop has a lengt
L510 km and we prepare initial conditions close to a h
mogeneous state with densityr in ~i.e., same density and ve
locity everywhere!. The system is slightly perturbed by
sinusoidal density perturbation of fixed maximum amplitu
dr50.01 and a wavelength equal to the loop length. T
particles are initially distributed equidistantly, the weightsni
are assigned according to Eq.~10! in order to reproduce the
desired density distribution, and the velocities correspond
to Ue(r) are used. All calculations are performed using 5
particles.

It is important to keep in mind that the results are on
partly comparable to real world data since the latter m
reflect the response of the nonlinear system to external
turbations, e.g., on-ramps, accidents, etc., which are no
cluded in the model.

In the following, the model parametert, which deter-
mines the time scale on which the flow tries to adapt onUe ,
is allowed to vary. This corresponds to a varying accelerat
capability of the flow due to a changing vehicle compositi
~percentage trucks, etc.!. This parametert, which is typically
of the order of seconds, controls a wide variety of differe
dynamical phenomena. A similar result has been found
@13# for a microscopic car-following model.

A. Analysis of the model equations

1. Fundamental diagram

The x isocline, i.e., the locus of points in thex2v-plane
for which dx/dt50, is found from Eq.~12! to be the ab-
scissa. The velocity isocline, i.e., the (x,v) points where the
acceleration vanishes can be inferred from Eq.~13!. For the
homogeneous and stationary solution one finds the isoc
velocity v0 as a function ofr as

v0~r![Ue~r!1gtUe9~r!. ~14!

Fixed points of the flow, defined as intersections of thex and
v isoclines, are thus expected only for densities above'0.6,
wherev0 approaches the abscissa, see Fig. 3. The flow of
homogeneous and stationary solution has no fixed point
strict sense sinceUe9 becomes extremely small atr51, but
does not vanish exactly. However, this could easily
changed by choosing another form ofUe . Figure 3 shows
these ‘‘force-free velocities’’v0 ~in the homogeneous an
stationary limit! together with the ‘‘force-free fundamenta
diagrams’’~for t51,5,10 s) for both investigated forms o
Ue . We expect the fundamental diagrams~FD! found from
the numerical analysis of the full equation set to be cente
around these ‘‘force-free fundamental diagrams.’’ While f
the Ue of the K3 model the FD always~i.e., for t
51,5,10 s) exhibits a simple one-hump behavior, Eq.~8!
leads to a one-, two-, or three-hump structure of the
depending on the time constantt. That is why a stronger
dependence of qualitative features on this constant may
expected for the plateau safe velocity. Note, however, t

d
-
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FIG. 3. Left two panels: velocity isoclines~i.e., points where accelerations vanish! for the homogeneous and stationary solution a
function of the local densityr for our model equations and theUe of the K3 model and the corresponding fundamental diagrams.
velocities are measured in ms21. Right two panels: ditto but for theUe with a plateau.
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even with the conventionalUe the ‘‘force-free velocity’’v0
exhibits fort510 s two additional extrema at intermedia
densities~up to four with the plateau function!. The implica-
tions of these additional extrema for the stability of the flo
are discussed below.

2. Stability

To get a preliminary idea about the stability regimes
the model, it is appropriate to perform alinear stability
analysis. By inserting Eq.~14! into the equations of motion
we obtain equations that formally look similar to the equ
tions of the K3 model

v̇ i5
v0~r!2v i

t
2

c0
2

r

]r

]x
1

m

r

]2v

]x2
, ~15!

the role ofUe now being played byv0. Thus with the appro-
priate substitution thelinear stability criterionof @4# can be
used

dv0

dr
,2F11S 2p

L D 2mt

r G c0

r
. ~16!

Thus we expect the flow to be linearly unstable in dens
regimes where the decline ofv0 with r is steeper than a
given threshold. Specifically, extrema of thev0(r) are ~to
linear order! stable and we, therefore, expectstable density
regions embedded in unstable regimes.

B. Simulation Results

The previous analytical considerations give a rough id
of what to expect; for a more complete analysis, however,
have to resort to a numerical treatment of the full equat
set. In order to be able to distinguish the effects result
from the additional term in the equations of motion fro
03610
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those coming from the form ofUe , we treat two cases sepa
rately: in the first case the conventional form ofUe is used
and in the second the effects due to a plateau inUe are
investigated.

1. Conventional Form of Ue

To obtain a FD comparable to measurements, we cho
fixed site on our road loop. We determine averages o
1 min in the following way: r1m5p21( i 51

p r i and j 1m

5p21( i 51
p r iv i , wherep is the number of particles that hav

passed the reference point within the last minute. The t
calculated FD~Fig. 4 ~left panel! is, as expected, close to
superposition of the ‘‘force-free FDs,’’ for different values o
t see Fig. 3,~left panel!. As in real-world traffic data, in the
higher density regimes the flow is not an unambiguous fu
tion of r, but rather covers a surface given by the range ot
in the measured data. Note that many data points in the
stable regime~see below! exhibit substantially higher flows
than expected from the ‘‘force-free FDs’’~see Fig. 3!.

In certain density ranges the model showsinstability with
respect to jam formation from an initial slight perturbatio
In this regime the initial perturbation of the homogeneo
state grows and finally leads to a breakdown of the flow i
a backward moving jam@Kerner refers to this state, wher
vehicles come in an extended region to a stop, as ‘‘w
jam’’ ~WJ! contrary to a ‘‘narrow jam’’~NJ!, which basically
consists only of its upstream and downstream fronts and
hicles do not, on average, come to a stop;@14##. This phe-
nomenon, widely known as ‘‘jam out of nowhere,’’ is repro
ducible with several traffic flow models~e.g.,@1,15,16#!. An
example of a spontaneously forming WJ accompanied
two NJs is given in Fig. 5,~left panel!, for an initial density
of r in50.25. It is interesting to note that the initial perturb
tion remains present in the system for approximately 15 m
without noticeably growing in amplitude before the flo
breaks down. As in reality the inflow front of the WJ is muc
6-4
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FIG. 4. Shown are measured 1 min averages of a set of simulations where the time scalet has been scanned from 1 up to 10 s. The l
panel results from using the conventional form of the safe velocity, for the right one the plateau function was used.
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steeper than the outflow front of the jam. Note the similar
with the jam formation process within the K3 model @4#.

To give a global idea in which density regimes congest
phenomena occur, we show in Fig. 6~left panel! the velocity

variance sv5A1/N( i(v i2 v̄)2 for given initial densities.
The system is allowed to evolve from its initial state untilsv
converges. Ifsv has not converged after a very long timeTs
~being 10 000 s! it is assumed that no stationary state (sv
'const) can be reached andsv is taken atTs . N denotes the
particle number andv̄ the average particle velocity in th
system. For low values oft ~1 and 5 s! the system shows
spontaneous jam formation in a coherent density reg
from ;0.16 to ;0.5, comparable to measured data. Fot
510 s a stable regime at intermediate densities surroun
by unstable density regimes is encountered. This region
responds to the two close extrema seen in Fig. 3~first panel!.

Another widespread phenomenon is the formation of s
eral jams following each other, so-calledstop-and-go waves.
This phenomenon is also a solution of our model equatio
see Fig. 7~left panel!. The emerging pattern of very sharp
localized perturbations is found in empirical traffic data
well ~see Fig. 14, detector D7 in Ref.@12#!.
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A very interesting phenomenon happens towards the
per end of the instability range (r in;0.5). After the initial
perturbation has remained present in the system for m
than 20 min without growing substantially in amplitude, s
Fig. 8, suddenly a sharp velocity spike appears at
51750 s that broadens in the further evolution until the s
tem has separated into two phases: a totally queued ph
where the velocity vanishes on a distance of several kilom
ters, and a homogeneous high velocity phase, both sepa
by a shocklike transition. We refer to these states with
mogeneous velocity plateaus separated by shock front
mesa states.

2. Ue with plateau

The numerically determinedfundamental diagramsfor
the case with plateau is shown in Fig. 4~right panel!. The
additional extrema expected from the ‘‘force-free velocit
v0 are visible in the data points. We, therefore, conclude t
if a pronounced plateau in Ue really does exist, additiona
extrema should appear in the measured fundamental
grams, at least for flows with poor acceleration capabilitie
i.e., larget ’s.
FIG. 5. Emerging spontaneous breakdown of traffic flow in the unstable regime of our model (m550 ms21, t55 s, r in50.25). The
growing jam moves with'28 km h21 backwards.
6-5



STEPHAN ROSSWOG AND PETER WAGNER PHYSICAL REVIEW E65 036106
FIG. 6. Velocity variancesv for t51,5,10 s as a function of the initial density for the conventional form of the safe velocity~left! and
the plateau function~right!.

FIG. 7. Formation of stop-and-go waves out of nearly homogeneous initial conditions (r in50.25, m550 ms21, t53 s). For the left
panel the conventional form of the safe velocity was used, the right panel corresponds to the plateau safe velocity.

FIG. 8. ‘‘Mesa-effect 1’’: formation of velocity plateaus (r in50.50, m550 ms21, t510 s) for the conventional~left! and the plateau
safe velocity~right!.
036106-6
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FIG. 9. Emerging spontaneou
breakdown of traffic flow in
the unstable regime of ou
model (r in50.26, m550 ms21,
t510 s) with the plateau safe ve
locity. The use of the conventiona
safe velocity~not shown! results
in a quick relaxation towards the
homogeneous state.
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Also with the plateau function the system showssponta-
neous jam appearance. The formation of an isolated, stab
WJ is displayed in Fig. 5~right panel!. With a change in the
parametert ~10 s rather than 5 s as inFig. 5! one finds a
more complicated pattern with one WJ that coexists fo
long time with constantly emerging and disappearing N
see Fig. 9.

The global stability properties for the case with plate
are shown in Fig. 6, right panel. As expected from the lin
stability analysis@see Eq.~16! and Fig. 3, right panels# we
find alternating regimes of stability and instability rather th
03610
a
s,
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one coherent density range where the flow is prone to in
bility. For low (r&0.1) and very high density (r*0.7), ini-
tial perturbations decrease in amplitude, i.e., the system
laxes towards the homogeneous state. In between t
density perturbations may grow and lead to spontane
structure formation of the flow. The stable regions with
unstable flow are found around densities, for whi
dv0 /dr50. This is displayed for two values oft in Fig. 10.

The accelerationsin the model were never found to ex
ceed;4 ms22 for negative and;1.5 ms22 for positive
signs and thus agree with accelerations from real-world t
FIG. 10. Shown are comparisons of thesv and v0 as functions ofr for t510 s ~left! and t55 s ~right! for the case of the plateau
function. Stability is encountered wheredv0 /dr is small, otherwise the flow is unstable.
6-7
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STEPHAN ROSSWOG AND PETER WAGNER PHYSICAL REVIEW E65 036106
fic data ~for both forms ofUe). For reasons of illustration
Fig. 11 displays velocities and the corresponding accel
tions at one time slice of a simulation (r in50.25, m
550 ms21, t53 s) for Ue according to Eq.~8!.

Also the plateau function allows forstop-and-go-waves,
see Fig. 7, right panel. The shown evolution process is c
to what Kerner@14# describes as general features of sto
and-go waves: initiated by a local phase transition from f
to synchronized flow, numerous well localized NJs emer
move through the flow and begin to grow. One part of t
NJs propagates in the downstream direction~see, e.g., the
perturbations located at;2 km at t5400 s) while the rest
~at t5400 s at;8 km) move upstream. Once the first W
has formed after approximately 500 s the NJs start to me

FIG. 11. Velocities and accelerations in a violently conges
state ~480 s after simulation starts,r in50.25, m550 ms21, t
53 s). The encountered accelerations are always and everyw
in the range expected from experimental traffic data.
03610
a-

se
-
e
,

e

e

with it. This NJ-WJ merger process continues until a statio
ary pattern of three WJs has formed~at around 1000 s; no
shown!, which moves with constant velocity in upstream d
rection. The distance scale of the downstream fronts of th
self-formed WJs is in excellent agreement with the expe
mental value of 2.5–5 km@14#.

We found for the conventional form ofUe a separation
into different homogeneous velocity phases that we ca
mesa states. This feature is also present if the plateau fun
tion is used. In Fig. 8,~right panel!, the initial perturbation
organizes itself into different platoons of homogeneous
locities. These platoons are separated by sharp, shoc
transitions and form a stationary pattern that moves along
loop without changing in shape.

The relaxation term in Eq.~6! plays a crucial role for the
stabilization of this pattern. If, for example, the relaxatio
time t is increased~see Fig. 12! and thus the importance o
the relaxation term is reduced, the system is not able to
bilize the velocity plateau. It seems to be aware of the
states, but it is always heavily disturbed and never able
reach a stationary state. Again, the composition of the tra
flow plays viat, the crucial role for the emerging phenom
ena.

V. SUMMARY

Starting from the assumption that a safe velocityUe(r)
exists towards which drivers want to relax by anticipating t
density ahead of them, we motivate a set of equations for
temporal evolution of the mean flow velocity. The resultin
partial differential equations possess a Navier-Stokes-
form, they extend the well-known macroscopic traffic flo
equations of Ku¨hne, Kerner, and Konha¨user by an additiona
term proportional to the second derivative ofUe(r). Moti-
vated by recent empirical results, we explore, in addition
the new equation set, also the effects of aUe function that
exhibits a plateau at intermediate densities. The results

d

ere
s

t
t

FIG. 12. ‘‘Mesa effect 2’’: the composition of
the flow ~e.g., the fraction of trucks! plays a cru-
cial role for the stability of the velocity plateau
(r in50.50, m550 ms21, t512 s). The same
initial conditions for the plateau function do no
lead to a behavior that is qualitatively differen
from Fig. 8, left panel.
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compared to the use of a conventional form ofUe .
These fluidlike equations are solved using a Lagrang

particle scheme that formulates density in terms of part
properties and evaluates first-order derivatives analytic
by means of cubic spline interpolation and second-order
rivatives by equidistant finite differencing of the spline
quantities. The continuity equation is fulfilled automatica
by construction. This method is able to follow the evoluti
of the ~in some ranges physically unstable! traffic flow in a
numerically stable way and to resolve emerging shock fro
accurately without any spurious oscillations.

The presented model shows for both investigated form
Ue a large variety of phenomena that are well known fro
real-world traffic data. For example, traffic flow is found
be unstable with respect to jam formation initiated by
subtle perturbation around the homogeneous state. As in
ality, stable backward-movingwide jamsas well as sharply
localizednarrow jamsform. These latter ones move throug
the flow without leading to a full breakdown until they merg
and form wide jams. The distance scale of the downstre
fronts of these self-formed wide jams is in excellent agr
ment with the empirical values. The encountered accel
tions are in very good agreement with measured values.
the Ue with plateau we also find states where a stable w
jam coexists with narrow jams that keep emerging and
appearing without ever leading to a breakdown of the flo
properties that are usually attributed to the elusive state
‘‘synchronized flow.’’ Another, striking phenomena is e
countered that we call the ‘‘mesa effect’’: the flow may o
ganize into a state, where platoons of high and low veloc
follow each other, separated only by a very sharp, shock
transition region. This pattern is found to be stationary, i.e
moves forward without changing its shape. One may spe
late, that these mesa states are related to the minimum
phase found in the work using the ASEP as a model
o-
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traffic flow @1#.
In other regions of parameter space the flow is never a

to settle into a stationary state. Here wide jams and a mu
tude of emerging moving or disappearing narrow jams m
coexist for a very long time. Again, it may be presumed th
in these cases the system displays deterministic chaos, h
ever, we did not check this beyond any doubt.

The basic effect of the new interaction term is to make
‘‘force-free velocity,’’ which essentially determines the sha
of the fundamental diagram, sensitive to the relaxation
rametert. For large values oft additional extrema in the
‘‘force-free flows’’ are introduced and a stability analys
shows that the flows are stable against perturbations in
vicinity of these extrema. This leads to the emergence
alternating regimes of stability and instability, the details
which depend on the shape ofUe . We find that if a pro-
nounced plateau inUe really does exist, it should appear i
the measured fundamental diagrams, at least for flows w
poor acceleration capabilities, i.e., larget ’s.

The crucial parameter, besides density which determi
the dynamic evolution of the flow and all the related ph
nomena, is the relaxation timet. Since this parameter gov
erns the time scale on which the flow tries to adapt to
desired velocityUe , we may interpret it as a measure for th
flow composition~fraction of trucks, etc.!. It is this compo-
sition that determines whether/which structure format
takes place, whether the system relaxes into a homogen
state, forms isolated wide jams or a multitude of interact
narrow jams.

To conclude, this work shows that a surprising richness
phenomena is encountered if one allows for a slight cha
of the underlying traffic flow equations. Further work
needed in order to extend the qualitative description und
taken in this work and to find more quantitative relationsh
between the traffic flow models and reality.
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