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Towards a macroscopic modeling of the complexity in traffic flow
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Based on the assumption of a safe velotityp) depending on the vehicle densjy a macroscopic model
for traffic flow is presented that extends the model of theénikae+Kerner-Konhaser by an interaction term
containing the second derivative 0f,(p). We explore two qualitatively different forms &f,: a conventional
Fermi-type function and, motivated by recent experimental findings, a function that exhibits a plateau at
intermediate densities, i.e., in this density regime the exact distance to the car ahead is only of minor impor-
tance. To solve the fluidlike equations a Lagrangian particle scheme is developed. The suggested model shows
a much richer dynamical behavior than the usual fluidlike models. A large variety of encountered effects is
known from traffic observations, many of which are usually assigned to the elusive state of “synchronized
flow.” Furthermore, the model displays alternating regimes of stability and instability at intermediate densities.
It can explain data scatter in the fundamental diagram and complicated jam patterns. Within this model, a
consistent interpretation of the emergence of very different traffic phenomena is offered: they are determined
by the velocity relaxation time, i.e., the time needed to relax towdrdg). This relaxation time is a measure
of the average acceleration capability and can be attributed to the compdsitionthe percentage of trugks
of the traffic flow.
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[. INTRODUCTION form of these Navier-Stokes-like equations can be motivated
from anticipative behavior of the drivers.

Traffic is a realization of an open one-dimensional many- Assume there is a safe velocity, that only depends on
body system. Recently, Popkov and S ] found that the  the densityp. The driver is expected to adapt the velocity in
fundamental diagram determines the phase diagram of sucheaway that relaxes on a time scaleto this desired velocity
system at least for a very simple but exactly solvable toycorresponding to the density at- Ax
model, the so-called asymmetric exclusion prood@sSEP.

In particular, the most important feature that influences the v(X+vT,t+7)=Ug(p(X+AX)). (1)

gii;zsrzrg!agram Is the number of extrema in the fundamentz# both sides are Taylor expanded to first order, one finds
This is exactly the theme of this report. We present an ov ov U, dp

extension of classical, macroscopffluidlike” ) traffic flow v(X)+ —v7+ —1+0(2) =Ug(p) + — —AX

models. Usually, it is assumed that the fundamental diagram X at ap X

is a one-hump function; however, recent empirical results +O((AX)?). )

point to more complicated behavior. It is impossible to as-

sign a single flow functiorj(p) to the measured data points InsertingAx=p !

in a certain density range. Therefore, it can be speculated that

this scatter hides a more complicated behavior of the funda- v dv Ugp)—v 1 dUg(p) dp

mental diagram in this regime. We explore two qualitatively ot T Vax ;" pr dp X )

different forms of the safe velocitY.(p), the velocity to

which the flow tends to relax, which leads from the usualAbbreviating[ dUq(p)/dp]1/7 with —cg the Payne equation
one-hump behavior of the flow density relation to a more[2] is recovered

complicated function that exhibits, depending on the relax-

ation parameter, one, two, or three humps. Obviously, real dv dv  Ug(p)—v CS ap

drivers may have differerit)(p) functions, adding another v T poox @
source of dynamical complexity, which will not be discussed

in this paper. If one seeks the analogy to the hydrodynamic equations, one

can identify a “traffic pressureP= cgp. In this sense traffic
follows the equation of state of a perfect g@empare to
Il. THE MODEL thermodynamicsP =nkgT).

The above described procedure to motivate fluidlike mod-
els can be extended beyond the described model in a
If the behavior of individual vehicles is not of concern straightforward way. If, for example, E@l) is expanded to
and the focus is more on aggregated quantiigeg., density second order, quadratic terms inare neglected, the abbre-

p, mean velocity,v, etc), one often describes the system viation ¢, is used and the terms in front fU./dp? are
dynamics by means of macroscopic, fluidlike equations. Theabsorbed in the coupling constagtone finds

A. Equations
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Udp)=v Codp
—_— =+ _
. Py gUe(p)

8v+ Jv
o Vax

(5

The primes in the last equation denote derivatives with
respect to the density. Since these equations allow infinitely
steep velocity changes, we afs in the usual macroscopic
traffic flow equationd3,4]) a diffusive term to smooth out
shock fronts

dv dv  Ug(p)—v
at Vox 7

(6)
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Since a vehicle passing through an infinitely steep veloc- P P

ity shock front would suffer an infinite acceleration, we in-
terpret the diffusive(“viscosity”) term as a result of the
finite acceleration capabilities of real world vehicles. Our
model Eq.(6) extends the equations of the Kue-Kerner-
Konhauser(in the sequel calleét® model;[3,4]) model by a
term coupling to the second derivative of the desired veloc
ity. Throughout this study we us&,=15 ms?!, u
=50 ms !, andg=8x10* m?s L

B. Shape of the safe velocity

The form of the safe velocity, plays an important role
in this class of model&s can be seen, for example, from the
linear stability analysis of the Kmode). However, experi-

FIG. 1. Safe velocity with a plateau and the corresponding flow.
For details see text.

are always normalized with respect to their maximum pos-

sible valuepnax, Which is given by the average vehicle

length adl, .

IIl. THE NUMERICAL METHOD: A LAGRANGIAN
PARTICLE SCHEME

We use a Lagrangian particle scheme to solve the Navier-
Stokes-like equations for traffic flow. A particle method simi-
lar to the smoothed particle hydrodynamics meth®Hhas

mentally the relation between this desired velocity and thébeen used previously to simulate traffic flp6]. The method
vehicle density is poorly known. It is reasonable to assume &e use here, however, differs in the way the density and the
maximum at vanishing density and once the vehicle bumperderivatives are calculated. The particles correspond to mov-

touch, the velocity will(hopefully) be zero.

ing interpolation centers that carry aggregated properties of

To study the effect of the additional term in the equationsthe vehicle flow, as, for example, the vehicle dengpityhey
of motion, we first investigate the case of the conventionahre not to be confused with single “test vehicles” in the flow,

safe velocity given by a Fermi function of the forfm]

U=40(1/1+exd (p—0.25/0.06]} —3.72<10 ©) ms*.
(7

SinceU, is at present stage rather uncertain, we also exam-
ine the effects of a more complicated relation between the

desired velocityU, and the densityp. For this reason we

they rather correspond to “a bulk” of vehicles.

The first step in this procedure is to define what is meant
by the term “vehicle density.” Since we assign a number
indicating the corresponding vehicle numbgrto each par-
ticle i with positionx;, the density definition is straightfor-
ward, i.e., the number of vehicles per length that can be
assigned unambiguously to parti¢leor

look at a velocity-density relation that has a plateau at inter-

mediate densities, which, in a microscopic interpretation
means that in a certain density regime drivers do not car
about the exact distance to the car ahead. We chogdé.an
function of the form

Vo
Uelp) =5 [&(p)—&D)], pel0]] 8

with
E(X)=N10(X—Xc1) + N0 (X—Xcp)

9

where O(x)=1[1+exp@X)] is used. The parameters;
=1.5,n,=0.5, a=25.0, X;;=0.2, x,;=0.5, andV,=40

. n; _ 2ni
X X2 (=X -1)/2 Xjp1—Xi—1

e

(10

Once this is done one has to decide in which way spatial
derivatives are to be evaluated. One possibility would be to
take finite differences of properties at the particle positions.
However, one has to keep in mind that the particles are not
necessarily distributed equidistantly and thus in standard fi-
nite differences higher-order terms do not automatically can-
cel outexactly The introduced errors may be appreciable in
the surrounding of a shock and they can trigger numerical
instabilities that prevent further integration of the system.
Therefore, we decided to evaluate first-order derivatives as
the analytical derivativesof cubic spline interpolations

ms ! are used throughout this study. The corresponding safthrough the particle positions. Second-order derivatives of a
velocity and flow are shown in Fig. 1. Note that the densitiesvariablef are evaluated using centered finite differences
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150.0 . - - - reveal a tremendous amount of different phenomena, many
of which are also encountered in other nonlinear systems.
To identify properties of our model equations, we apply
them to a closed one-lane road loop. The loop has a length of
L=10 km and we prepare initial conditions close to a ho-
100.0 “\ 1 mogeneous state with density, (i.e., same density and ve-
locity everywherg The system is slightly perturbed by a
sinusoidal density perturbation of fixed maximum amplitude
6p=0.01 and a wavelength equal to the loop length. The
particles are initially distributed equidistantly, the weights
are assigned according to EGO) in order to reproduce the
desired density distribution, and the velocities corresponding
to Ue(p) are used. All calculations are performed using 500
particles.
00 . . . . It is important to keep in mind that the results are only
0.0 20 40 x [km] 60 8.0 100 partly comparable to real world data since the latter may
reflect the response of the nonlinear system to external per-
FIG. 2. Emerging spontaneous breakdown of traffic flow in theturbations, e.g., on-ramps, accidents, etc., which are not in-
unstable regime of the Xmodel (p;;=0.20, x=50 mst, r  cluded in the model.
=10 s). Shown is a developed, but still broadening, backward In the following, the model parametet, which deter-
moving jam and a sharply localized forward moving and still steep-mines the time scale on which the flow tries to adaptian

v [km/h]

500 |

ening velocity perturbation. is allowed to vary. This corresponds to a varying acceleration
capability of the flow due to a changing vehicle composition
22f fo+f_—2f(x) (percentage trucks, ejcThis parametet, which is typically
—X)= +0(6%), (11 of the order of seconds, controls a wide variety of different
Ix g dynamical phenomena. A similar result has been found in

where f,=f(x+8) and f_=f(x—5) are evaluated by [13] for a microscopic car-following model.

spline interpolation and is an appropriately chosen discreti-
zation length. Since we do not evolve the “weights;" in

time, there is no need to handle a continuity equation, the 1. Fundamental diagram
total vehicle numberN is constant and is given ahl

= Zini . : ;
. s . . . for which dx/dt=0, is found from Eq.(12) to be the ab-
Denoting the left-hand side of EF) in Lagrangian form scissa. The velocity isocline, i.e., the,{) points where the

v=dv/dt=dv/dt+vdv/ox, we are left with a first-order cceleration vanishes can be inferred from @@). For the

A. Analysis of the model equations

The x isocline, i.e., the locus of points in the-v-plane

system homogeneous and stationary solution one finds the isocline
) velocity v, as a function ofp as
Xi =VUj (12)
, , vo(p)=Ue(p) +97UL(p). (14)
- Uelp)—v Codp pdv p
vi=———— = ——+——+gU(p). (13  Fixed points of the flow, defined as intersections ofstrend
T p IX p ox

v isoclines, are thus expected only for densities abe0e6,

This set of equations is integrated forward in time bywherevo approaches th_e abscissa, see Fig. 3. The flow of.the
means of a fourth-order accurate Runge-Kutta integratopomogeneous and stationary solution has no fixed point in a
with adaptive time step. strict sense sinc®); becomes extremely small at=1, but

The described scheme is able to resolve emerging shodkoes not vanish exactly. However, this could easily be
fronts sharply without any spurious oscillations. An examplechanged by choosing another form @t . Figure 3 shows

of such a shock front is shown in Fig. 2 for thé kiodel. ~ these “force-free velocities'v, (in the homogeneous and
stationary limi} together with the “force-free fundamental

diagrams” (for 7=1,5,10 s) for both investigated forms of

U.. We expect the fundamental diagra#D) found from
Traffic modeling as well as traffic measurements have dhe numerical analysis of the full equation set to be centered

longstanding traditior(e.g., Greenshieldg7], Lighthill and  around these “force-free fundamental diagrams.” While for

Whitham[8], Richards[9], Gaziset al. [10], Treiterer[11], the U, of the K model the FD always(i.e., for 7

to name just a feyv In recent years physicists working in this =1,5,10 s) exhibits a simple one-hump behavior, E).

area have tried to interpret and formulate phenomena erleads to a one-, two-, or three-hump structure of the FD

countered in traffic flow in the language of nonlinear dynam-depending on the time constant That is why a stronger

ics (see, for example, the review of Kerfd2] and many of dependence of qualitative features on this constant may be

the references cited thergiriThe measured real-world data expected for the plateau safe velocity. Note, however, that

IV. COMPLEXITY IN TRAFFIC FLOW
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v=U,+gtU, v, P ve=U,+gtU, Vo P

50.0

FIG. 3. Left two panels: velocity isoclingg.e., points where accelerations vanigbr the homogeneous and stationary solution as a
function of the local density for our model equations and thg, of the k¥ model and the corresponding fundamental diagrams. All
velocities are measured in ms Right two panels: ditto but for the, with a plateau.

even with the conventiondl, the “force-free velocity"v,  those coming from the form df., we treat two cases sepa-
exhibits forr=10 s two additional extrema at intermediate rately: in the first case the conventional form W is used
densities(up to four with the plateau functionThe implica-  and in the second the effects due to a plateaW jnare
tions of these additional extrema for the stability of the flowinvestigated.

are discussed below.

1. Conventional Form of L}

2. Stabilit .
Y To obtain a FD comparable to measurements, we chose a

To get a preliminary idea about the stability regimes offixed site on our road loop. We determine averages over
the model, it is appropriate to perform lmear stability 1 min in the following way: p;m= p~ISP_pi and jinm
analysis_By inserting Eq.(14) into the equ_ati_ons of motion, _ p~!=P_ piv;, wherep is the number of particles that have
we obtain equations that formally look similar to the equa-passeq the reference point within the last minute. The thus
tions of the K model calculated FD(Fig. 4 (left pane) is, as expected, close to a

) 5 superposition of the “force-free FDs,” for different values of
b:vo(P)_Ui _Codp mIv (15 7. ee Fig. 3(left pane). As in real-world traffic data, in the
: T p X p gx2’ higher density regimes the flow is not an unambiguous func-
tion of p, but rather covers a surface given by the range of
the role ofU, now being played by,. Thus with the appro- in the measured data. Note that many data points in the un-
priate substitution théinear stability criterionof [4] can be  stable regimesee below exhibit substantially higher flows

used than expected from the “force-free FD$5ee Fig. 3.
In certain density ranges the model shanstability with
dvg 27\ 2ur] co respect to jam formation from an initial slight perturbation.
$<— 1+(T) s (16)  In this regime the initial perturbation of the homogeneous

state grows and finally leads to a breakdown of the flow into

Thus we expect the flow to be linearly unstable in density? Packward moving janikemer refers to this state, where
regimes where the decline af, with p is steeper than a vehicles come in an extended region to a stop, as ‘wide
given threshold. Specifically, extrema of thg(p) are (o 1am” (WJ) contrary to a “narrow jam’(NJ), which basically
linear ordef stable and we, therefore, expetable density consists only of its upstream and downstream fronts and ve-

regions embedded in unstable regimes hicles do not, on average, come to a stipd]]. This_ phe-
nomenon, widely known as “jam out of nowhere,” is repro-

ducible with several traffic flow modelg.g.,[1,15,16). An

example of a spontaneously forming WJ accompanied by
The previous analytical considerations give a rough idedwo NJs is given in Fig. 5(left pane), for an initial density

of what to expect; for a more complete analysis, however, wef p;,=0.25. It is interesting to note that the initial perturba-

have to resort to a numerical treatment of the full equatiortion remains present in the system for approximately 15 min

set. In order to be able to distinguish the effects resultingvithout noticeably growing in amplitude before the flow

from the additional term in the equations of motion from breaks down. As in reality the inflow front of the WJ is much

B. Simulation Results
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FIG. 4. Shown are measured 1 min averages of a set of simulations where the time Isaslbeen scanned from 1 up to 10 s. The left
panel results from using the conventional form of the safe velocity, for the right one the plateau function was used.

steeper than the outflow front of the jam. Note the similarity A very interesting phenomenon happens towards the up-
with the jam formation process within the*nodel[4]. per end of the instability rangep(,~0.5). After the initial

To give a global idea in which density regimes congestiornperturbation has remained present in the system for more
phenomena occur, we show in Fig(l6ft pane) the velocity  than 20 min without growing substantially in amplitude, see

variance o, = V1IN, (v;—v)? for given initial densities. Fig. 8, suddenly a sharp velocity spike appears tat
The system is allowed to evolve from its initial state uptjl ~=1750 s that broadens in the further evolution until the sys-
converges. lfr, has not converged after a very long tifig €M has separated into two phases: a totally queued phase,
(being 10000 kit is assumed that no stationary state, where the velocity vanishes on a distance of several kilome-
~const) can be reached ang is taken aff. N denotes the ~ €rS, and a homogen.elous high velocity phase, both sgparated
particle number and the average particle velocity in the by a shocklike transition. We refer to these states with ho-

system. For low values of (1 and 5 § the system shows mogeneous Vvelocity plateaus separated by shock fronts as

: ST . . _mesa states
spontaneous jam formation in a coherent density regime

from ~0.16 to ~0.5, comparable to measured data. For
=10 s a stable regime at intermediate densities surrounded
by unstable density regimes is encountered. This region cor- The numerically determinedundamental diagramgor
responds to the two close extrema seen in Fidir8t panel.  the case with plateau is shown in Fig.(dght pane). The
Another widespread phenomenon is the formation of sevadditional extrema expected from the “force-free velocity”
eral jams following each other, so-callstbp-and-go waves v are visible in the data points. We, therefore, conclude that
This phenomenon is also a solution of our model equationsf a pronounced plateau in Jreally does exist, additional
see Fig. 7(left pane). The emerging pattern of very sharply extrema should appear in the measured fundamental dia-
localized perturbations is found in empirical traffic data asgrams, at least for flows with poor acceleration capabilities,

2. U, with plateau

well (see Fig. 14, detector D7 in RdflL2)). i.e., larger’s.
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FIG. 5. Emerging spontaneous breakdown of traffic flow in the unstable regime of our mod&Q ms'!, r=5s, p;,=0.25). The
growing jam moves with=28 km h ! backwards.
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FIG. 6. Velocity variancer, for 7=1,5,10 s as a function of the initial density for the conventional form of the safe veldefty and
the plateau functiorright).
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FIG. 7. Formation of stop-and-go waves out of nearly homogeneous initial condipgrs@.25, ©=50 ms'!, r=3 s). For the left
panel the conventional form of the safe velocity was used, the right panel corresponds to the plateau safe velocity.
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Also with the plateau function the system shosyonta- one coherent density range where the flow is prone to insta-
neous jam appearanc&he formation of an isolated, stable bility. For low (p=<0.1) and very high densityp& 0.7), ini-
WJ is displayed in Fig. %right panel. With a change in the tial perturbations decrease in amplitude, i.e., the system re-
parameterr (10 s rather tha 5 s as inFig. 5 one finds a laxes towards the homogeneous state. In between these
more complicated pattern with one WJ that coexists for adensity perturbations may grow and lead to spontaneous
long time with constantly emerging and disappearing NJsstructure formation of the flow. The stable regions within
see Fig. 9. unstable flow are found around densities, for which
The global stability properties for the case with plateaudv,/dp=0. This is displayed for two values afin Fig. 10.
are shown in Fig. 6, right panel. As expected from the linear The accelerationsin the model were never found to ex-
stability analysigsee Eq.(16) and Fig. 3, right panelsve  ceed~4 ms 2 for negative and~1.5 ms 2 for positive
find alternating regimes of stability and instability rather thansigns and thus agree with accelerations from real-world traf-
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P P

FIG. 10. Shown are comparisons of the andvg as functions ofp for 7=10 s(left) and 7=5 s (right) for the case of the plateau
function. Stability is encountered whetde ,/dp is small, otherwise the flow is unstable.
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100.0 Wa with it. This NJ-WJ merger process continues until a station-
sool & f f‘ﬁ % ' f- ary pattern of three WJs has forméat around 1000 s; not
iy Y | 8 shown), which moves with constant velocity in upstream di-
Tosor ti ¥ ’ | S rection. The distance scale of the downstream fronts of these
£ ool % o5 self-formed WJs is in excellent agreement with the experi-
i 4] mental value of 2.5-5 krfil4].
20T 5 ] We found for the conventional form df, a separation
0.0 into different homogeneous velocity phases that we called
0.0 20 4.0 6.0 8.0 10.0 ) . .
20 ' . . . mesa statesThis f_eature_ is also present |_f_the plateau_func-
tion is used. In Fig. 8(right panel, the initial perturbation
tor g’% s f& organizes itself into different platoons of homogeneous ve-
0.0 X\%\x%ﬁ N locities. These platoons are separated by sharp, shocklike
“E ol e H K I ] transitions and form a stationary pattern that moves along the
s ool ¢ % - ] loop without changing in shape.
The relaxation term in E(6) plays a crucial role for the
0 ‘ stabilization of this pattern. If, for example, the relaxation
%0 20 20 6.0 80 100 time 7 is increasedsee Fig. 12 and thus the importance of

X [km] the relaxation term is reduced, the system is not able to sta-
Gbilize the velocity plateau. It seems to be aware of these
state (480 s after simulation starts;,=0.25, ©=50 ms? 7 Statehs’ but '.t is always hAe\av_IIy dh|sturbed af‘?' ne\f/ekr] ableﬁjo
=3 s). The encountered accelerations are always and everywheigaC a stationary state. Again, the composition ot the trafic

in the range expected from experimental traffic data. low plays viar, the crucial role for the emerging phenom-
ena.

FIG. 11. Velocities and accelerations in a violently congeste

fic data(for both forms ofU,). For reasons of illustration,
Fig. 11 displays velocities and the corresponding accelera-
tions at one time slice of a simulationp;{=0.25, u

=50 ms!, r=3 s) forU, according to Eq(8). Starting from the assumption that a safe velodity(p)

Also the plateau function allows fatop-and-go-waves exists towards which drivers want to relax by anticipating the
see Fig. 7, right panel. The shown evolution process is closdensity ahead of them, we motivate a set of equations for the
to what Kerner[14] describes as general features of stop-temporal evolution of the mean flow velocity. The resulting
and-go waves: initiated by a local phase transition from fregoartial differential equations possess a Navier-Stokes-like
to synchronized flow, numerous well localized NJs emergeform, they extend the well-known macroscopic traffic flow
move through the flow and begin to grow. One part of theequations of Khine, Kerner, and Konhmer by an additional
NJs propagates in the downstream directisae, e.g., the term proportional to the second derivative W@f(p). Moti-
perturbations located at2 km att=400 s) while the rest vated by recent empirical results, we explore, in addition to
(att=400 s at~8 km) move upstream. Once the first WJ the new equation set, also the effects df)afunction that
has formed after approximately 500 s the NJs start to mergexhibits a plateau at intermediate densities. The results are

V. SUMMARY

=100 t=200s 1= 300 s t= 400 s

30.0 T 30.0 T 30.0 T 30.0 T

20.0 | 4 20.0 g 20.0 | {1 20.0

v [km/h]

oo .
100 | { 100} 1 100 gij 100 N/\j ¥
FIG. 12. “Mesa effect 2": the composition of

0.0 ' 0.0 ‘ 0.0 ' 0.0 ‘ 9. i -
00 50 100 00 50 100 00 50 100 00 50 100 thel ﬂO;N (fe 9 ,hthe fraf:rt|on fofhtruc&ﬁolgys ? ety
a0 e w70 woos cial role for the stability of the velocity plateaus

300 ' 30.0 ‘ 300 ' 300 ‘ (pin=0.50, u=50 ms?, r=12's). The same
f

!V\ r 4%[\\ % initial conditions for the plateau function do not

%8 858

lead to a behavior that is qualitatively different

R E R B | from Fig. 8, left panel.

v [km/h]

Vido
100 ' \;\ﬁ/}?ﬁ 1 100} %st_ 10.0 jx: W0 M Vi
i

0.0 : 0.0 - 0.0 . 0.0 :
0.0 5.0 100 0.0 50 100 00 5.0 10.0 0.0 5.0 10.0

X [I;m] x [km]
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compared to the use of a conventional formUgf. traffic flow [1].

These fluidlike equations are solved using a Lagrangian In other regions of parameter space the flow is never able
particle scheme that formulates density in terms of particléo settle into a stationary state. Here wide jams and a multi-
properties and evaluates first-order derivatives analyticallyude of emerging moving or disappearing narrow jams may
by means of cubic spline interpolation and second-order decoexist for a very long time. Again, it may be presumed that
rivatives by equidistant finite differencing of the splined in these cases the system displays deterministic chaos, how-
guantities. The continuity equation is fulfilled automatically ever, we did not check this beyond any doubt.
by construction. This method is able to follow the evolution  The basic effect of the new interaction term is to make the
of the (in some ranges physically unstabteaffic flow in a  “force-free velocity,” which essentially determines the shape
numerically stable way and to resolve emerging shock frontef the fundamental diagram, sensitive to the relaxation pa-
accurately without any spurious oscillations. rameterr. For large values ofr additional extrema in the

The presented model shows for both investigated forms offorce-free flows” are introduced and a stability analysis
U, a large variety of phenomena that are well known fromshows that the flows are stable against perturbations in the
real-world traffic data. For example, traffic flow is found to vicinity of these extrema. This leads to the emergence of
be unstable with respect to jam formation initiated by aalternating regimes of stability and instability, the details of
subtle perturbation around the homogeneous state. As in revhich depend on the shape bf,. We find that if a pro-
ality, stable backward-movingiide jamsas well as sharply nounced plateau it really does exist, it should appear in
localizednarrow jamsform. These latter ones move through the measured fundamental diagrams, at least for flows with
the flow without leading to a full breakdown until they merge poor acceleration capabilities, i.e., largs.
and form wide jams. The distance scale of the downstream The crucial parameter, besides density which determines
fronts of these self-formed wide jams is in excellent agreethe dynamic evolution of the flow and all the related phe-
ment with the empirical values. The encountered acceleraaomena, is the relaxation time Since this parameter gov-
tions are in very good agreement with measured values. F@rns the time scale on which the flow tries to adapt to the
the U, with plateau we also find states where a stable widelesired velocity}J,, we may interpret it as a measure for the
jam coexists with narrow jams that keep emerging and disflow composition(fraction of trucks, etg. It is this compo-
appearing without ever leading to a breakdown of the flowsition that determines whether/which structure formation
properties that are usually attributed to the elusive state dfakes place, whether the system relaxes into a homogeneous
“synchronized flow.” Another, striking phenomena is en- state, forms isolated wide jams or a multitude of interacting
countered that we call the “mesa effect”: the flow may or- narrow jams.
ganize into a state, where platoons of high and low velocity To conclude, this work shows that a surprising richness of
follow each other, separated only by a very sharp, shocklik@henomena is encountered if one allows for a slight change
transition region. This pattern is found to be stationary, i.e., itof the underlying traffic flow equations. Further work is
moves forward without changing its shape. One may specuaeeded in order to extend the qualitative description under-
late, that these mesa states are related to the minimum flotgken in this work and to find more quantitative relationships
phase found in the work using the ASEP as a model fobetween the traffic flow models and reality.
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